Как оценить готовность L&D-отдела к работе с генеративными нейросетями
Эксперт предложил классификацию L&D-отделов из четырёх уровней — в зависимости от того, на какой стадии применения новых инструментов они находятся.
 
 
Эксперты уже год обсуждают, как ИИ изменит (или не изменит) работу отделов обучения и развития. Вопрос, какую роль он в итоге сыграет, довольно спорный, но одно очевидно — тем, кто создаёт обучение для сотрудников, придётся осваивать этот инструмент в любом случае. Британский эксперт в сфере корпоративного диджитал-обучения, основатель и глава компании Steal These Thoughts Росс Стивенсон предложил классификацию, которая поможет оценить, насколько ваша L&D-команда готова к работе с генеративными нейросетями, — а ещё дал несколько советов по тому, как эту готовность повысить. Пересказываем идеи из его статьи «Как легко оценить ИИ-готовность вашей команды за четыре шага».
Как оценить, на какой стадии ваш отдел
Классификация Росса Стивенсона описывает четыре уровня готовности и способности команды работать с генеративными нейросетями: осведомлённость, исследование, принятие и масштабирование. Каждый из них включает индикаторы, то есть желаемое поведение, и действия — усилия, которые уже прикладывает команда обучения и развития.
Осведомлённость
Первый уровень — для совсем новичков. В команде уже, вероятно, понимают, какие есть инструменты ИИ, осознают их важность, но пока не знают даже основ работы с ними.
Главный фокус на этом этапе заключается в том, чтобы разобраться в принципах работы генеративных нейросетей. Росс Стивенсон подчёркивает, что это очень важная часть — без понимания основ вы вряд ли освоите все возможности ИИ, не сможете полноценно его использовать. С чего начать? Вебинары, воркшопы, чтение статей по тому, как уже применяют разные подобные инструменты, — в общем, базовые теория и практика, позволяющие потихоньку вникать в эту тему.
Исследование
Эксперт уверен: большинство L&D-специалистов сейчас находится именно на этапе исследования и останется на нём в ближайшие полтора года (то есть где-то до середины 2025-го). Почему? Сейчас многие постепенно учатся работать с ИИ и пытаются внедрить его в работу, экспериментируют с пилотными проектами — очевидно, чтобы присмотреться и изучить все возможности, потребуется время.
Если вы регулярно пробуете ИИ на практике, изучаете новые инструменты, оцениваете свои возможности, пусть и на небольших задачах — вы как раз на этом уровне.
Что делать дальше? Автор статьи рекомендует продолжать обучение: постоянно повышать квалификацию, пытаться протестировать ИИ в рабочих процессах, постепенно формировать базы знаний и навыков. Конечно, нужна и насмотренность, так что знакомство с опытом коллег и составление подборки полезных ресурсов тоже помогут.
Принятие
Команды на уровне «Принятие» уже активно внедряют ИИ-продукты в рабочие процессы: они хорошо владеют основами, понимают, при решении каких задач и для достижения каких целей инструменты на основе нейросетей будут полезны. Если вы уже разрабатываете учебные стратегии с учётом нейросетей, понимаете, какие данные понадобятся для работы с ними, думаете об управленческих практиках при работе с ними и активно такие инструменты используете — это про вас.

Но и на этом этапе есть куда расти: например, пробовать нейросети в разных рабочих процессах, разрабатывать продвинутое обучение для команд и, конечно, составить руководство для работы с нейросетями внутри компании.
Масштабирование
Этот уровень описывает те команды, где в своих силах уже не сомневаются: все платформы опробованы, процессы оценены с помощью пилотных проектов, лучшие практики подобраны, инфраструктура готова. Конечно, без отрыва от происходящего в компании этого не сделать, так что и бизнес полностью перестраивается — под использование новых технологий заточены бизнес-стратегии и корпоративная культура.
Дальше расти особо некуда, но ожидаемое поведение всё же есть — это улучшение продуктивности сотрудников, свободное распространение знаний, фокус на постоянное развитие возможностей нейросетей. В общем, вступление в новую эру, которой все вроде бы и ждут.
Как прокачать свои навыки работы с нейросетями
Росс Стивенсон предлагает несколько рекомендаций, которые помогут подняться на ступеньку выше как вам, так и вашей команде.
Проверяйте себя
Конечно, оценка возможностей отдела начинается с вопроса — как хорошо вы и ваша команда знакомы с базой, какими навыками вы владеете и насколько эффективно работаете с нейросетями. Вопрос о базе тут, кстати, не праздный: точно ли все хорошо её знают или только делают вид (такое ведь тоже часто бывает) — в последнем случае сотрудникам отдела будет тяжело использовать инструменты на практике.
Однако только на вопросах, связанных с нейросетями, останавливаться не стоит: эксперт рекомендует спросить себя, как обстоят дела с командой в целом: готова ли она меняться, хорошо ли справляется с новыми необычными вызовами, предлагает ли новые решения или идеи. Это, вероятно, подскажет не только направление, в котором стоит идти, но и то, готова ли команда к этому пути.

Фокусируйтесь на возможностях и эффективности
А ещё Росс Стивенсон напоминает: технологии вторичны. Сначала стоит разобраться именно в рабочих проблемах и возможностях, а потом уже выбирать инструменты, которые позволят их решить (но не наоборот).
Эксперт делит все задачи L&D на три категории:
- те, что вы можете автоматизировать с помощью нейросетей (например, генерировать данные или составлять расписание для учебных программ и рассылать уведомление пользователям);
- те, что вы можете выполнить с помощью нейросетей (готовить описание курсов, анализировать полученные данные);
- те, что выполнить может только человек (разрабатывать курс или взаимодействовать с менеджерами).
Эксперт добавляет: обязательно учитывайте контекст — в большой корпорации ИИ-редактор упростит команде работу, но глобально ничего не изменит, а вот в крохотной команде (которая, может, только вы и есть) этот редактор потенциально изменит всё.
Развивайте насмотренность
Автор статьи предлагает постоянно следить за новыми практиками использования генеративных нейросетей и успешными кейсами коллег из других компаний. А ещё лучше — объединять с ними усилия, чтобы нарабатывать новые практики. Например, если у вас полно знакомых среди L&D-специалистов, самое время организовать своё мини-комьюнити для совместных экспериментов.
Составьте дорожную карту
Сформулируйте для команды конкретную цель и план того, как вы собираетесь дойти до неё, — чем яснее и чётче ваша стратегия, тем быстрее ваш L&D-отдел дойдёт от уровня новичков до настоящих профи в применении нейросетей.
 Все
                                Все
                             Истории
                                        Истории Дизайн
                                    Дизайн Код
                                    Код Геймдев
                                    Геймдев Бизнес
                                    Бизнес Маркетинг
                                    Маркетинг Управление
                                    Управление Кино
                                    Кино Музыка
                                    Музыка Проектная фотография
                                    Проектная фотография Развитие
                                    Развитие Здоровье
                                    Здоровье Деньги
                                    Деньги Образование
                                    Образование EdTech
                                    EdTech Корп. обучение
                                    Корп. обучение Блог Skillbox
                                    Блог Skillbox Глоссарий
                                        Глоссарий Спецпроекты
                                        Спецпроекты Профориентация
                                        Профориентация 
                                    
 
			 
		 
                     
                                     
                                     
                                     
                                    