Тест: насколько хорошо ты знаешь, как устроен квантовый компьютер?
Говорят, что после прохождения этого теста люди достигают квантового превосходства!
Кадр: сериал «Маньяк»
В какой-то момент транзисторы и бинарная система показались слишком скучными — тогда физики-математики решили сделать свой компьютер с блек-джеком и фотонами. Дело зашло так далеко, что сейчас квантовым компьютерам пророчат большое будущее в науке, статистике и медицине, появляются «квантовые» языки программирования (QPL, QCL и другие), а разработчики пытаются собрать мегакомп, чтобы достигнуть «квантового превосходства».
Сегодня смотреть в завтрашний день могут не только лишь все, но десять вопросов нашего теста помогут вам базово разобраться в теме или потешить своё самолюбие и достичь «квантового превосходства» уже сейчас — если вы уже разбираетесь в квантовых компьютерах. Поехали!
Сегодня смотреть в завтрашний день могут не только лишь все, но десять вопросов нашего теста помогут вам базово разобраться в теме или потешить своё самолюбие и достичь «квантового превосходства» уже сейчас — если вы уже разбираетесь в квантовых компьютерах. Поехали!
Начать тест |
Давайте сразу разберёмся: модель квантовых вычислений эффективнее, чем модель двоичных?
Не любые. Квантовые вычисления годятся для выполнения вероятностных и оптимизационных задач, потому что работают с суперпозицией. Например, факторизация или поиск дискретного логарифма на двоичном компьютере будут выполняться долго, а на квантовом — быстро. В перспективе квантовые компьютеры будут полезны для прогнозирования погоды, котировок на бирже, передвижения городского транспорта.
Но надо помнить, что квантовый компьютер работает на такой же модели универсальной машины Тьюринга, что и другие компьютеры, — он не может решать задачи, которые невозможно решить на двоичных компьютерах.
Но надо помнить, что квантовый компьютер работает на такой же модели универсальной машины Тьюринга, что и другие компьютеры, — он не может решать задачи, которые невозможно решить на двоичных компьютерах.
Верно! Квантовые вычисления годятся для специфических задач. Например, факторизации или поиска дискретного логарифма — на двоичном компьютере алгоритм будет выполняться долго, а на квантовом — быстро. В перспективе квантовые компьютеры будут полезны для прогнозирования погоды, котировок на бирже, передвижения городского транспорта.
Но надо помнить, что квантовый компьютер работает на такой же модели универсальной машины Тьюринга, что и другие компьютеры, — он не может решать задачи, которые невозможно решить на двоичных компьютерах.
Но надо помнить, что квантовый компьютер работает на такой же модели универсальной машины Тьюринга, что и другие компьютеры, — он не может решать задачи, которые невозможно решить на двоичных компьютерах.
Дальше |
Проверить |
Узнать результат |
Главное отличие квантового компьютера от обычного — он работает с помощью кубитов. А чем кубит отличается от классического бита?
Верно! Кубит — это квантовая система, которая может находиться в двух состояниях одновременно.
Например, монетка в двоичной системе — это бит. Когда мы её подбрасываем, это может дать два исхода: орёл или решка. При втором подкидывании у нас появляется уже два бита информации и четыре возможных исхода.
Кубит — квантовый бит, он фундаментально отличается от двоичного. Монетка, которую мы подкинули, продолжает вращаться, сохраняя оба состояния одновременно. Поймав монетку, мы увидим, в каком состоянии она находится. Так мы производим измерение.
Интересно вот что — две такие подброшенные монетки находятся уже не в двух состояниях, а в четырёх. Три — в восьми, пять — в тридцати двух. Каждая новая подкинутая монетка увеличивает число состояний в два раза. В итоге 300-кубитный компьютер позволил бы нам получить число квантовых состояний, большее, чем число частиц в нашей Вселенной.
Например, монетка в двоичной системе — это бит. Когда мы её подбрасываем, это может дать два исхода: орёл или решка. При втором подкидывании у нас появляется уже два бита информации и четыре возможных исхода.
Кубит — квантовый бит, он фундаментально отличается от двоичного. Монетка, которую мы подкинули, продолжает вращаться, сохраняя оба состояния одновременно. Поймав монетку, мы увидим, в каком состоянии она находится. Так мы производим измерение.
Интересно вот что — две такие подброшенные монетки находятся уже не в двух состояниях, а в четырёх. Три — в восьми, пять — в тридцати двух. Каждая новая подкинутая монетка увеличивает число состояний в два раза. В итоге 300-кубитный компьютер позволил бы нам получить число квантовых состояний, большее, чем число частиц в нашей Вселенной.
Не угадали :) Кубит — это квантовая система, которая может находиться в двух состояниях.
Например, монетка в двоичной системе — это бит. Когда мы её подбрасываем, это может дать два исхода: орёл или решка. При втором подкидывании у нас появляется уже два бита информации и четыре возможных исхода.
Кубит — квантовый бит, он фундаментально отличается от двоичного. Монетка, которую мы подкинули, продолжает вращаться, сохраняя оба состояния одновременно. Поймав монетку, мы увидим, в каком состоянии она находится. Так мы производим измерение.
Интересно вот что — две такие подброшенные монетки находятся уже не в двух состояниях, а в четырёх. Три — в восьми, пять — в тридцати двух. Каждая новая подкинутая монетка увеличивает число состояний в два раза. В итоге 300-кубитный компьютер позволил бы нам получить число квантовых состояний, большее, чем число частиц в нашей Вселенной.
Например, монетка в двоичной системе — это бит. Когда мы её подбрасываем, это может дать два исхода: орёл или решка. При втором подкидывании у нас появляется уже два бита информации и четыре возможных исхода.
Кубит — квантовый бит, он фундаментально отличается от двоичного. Монетка, которую мы подкинули, продолжает вращаться, сохраняя оба состояния одновременно. Поймав монетку, мы увидим, в каком состоянии она находится. Так мы производим измерение.
Интересно вот что — две такие подброшенные монетки находятся уже не в двух состояниях, а в четырёх. Три — в восьми, пять — в тридцати двух. Каждая новая подкинутая монетка увеличивает число состояний в два раза. В итоге 300-кубитный компьютер позволил бы нам получить число квантовых состояний, большее, чем число частиц в нашей Вселенной.
Не угадали :) Кубит — это квантовая система, которая может находиться в двух состояниях.
Например, монетка в двоичной системе — это бит. Когда мы её подбрасываем, это может дать два исхода: орёл или решка. При втором подкидывании у нас появляется уже два бита информации и четыре возможных исхода.
Кубит — квантовый бит, он фундаментально отличается от двоичного. Монетка, которую мы подкинули, продолжает вращаться, сохраняя оба состояния одновременно. Поймав монетку, мы увидим, в каком состоянии она находится. Так мы производим измерение.
Интересно вот что — две такие подброшенные монетки находятся уже не в двух состояниях, а в четырёх. Три — в восьми, пять — в тридцати двух. Каждая новая подкинутая монетка увеличивает число состояний в два раза. В итоге 300-кубитный компьютер позволил бы нам получить число квантовых состояний, большее, чем число частиц в нашей Вселенной.
Например, монетка в двоичной системе — это бит. Когда мы её подбрасываем, это может дать два исхода: орёл или решка. При втором подкидывании у нас появляется уже два бита информации и четыре возможных исхода.
Кубит — квантовый бит, он фундаментально отличается от двоичного. Монетка, которую мы подкинули, продолжает вращаться, сохраняя оба состояния одновременно. Поймав монетку, мы увидим, в каком состоянии она находится. Так мы производим измерение.
Интересно вот что — две такие подброшенные монетки находятся уже не в двух состояниях, а в четырёх. Три — в восьми, пять — в тридцати двух. Каждая новая подкинутая монетка увеличивает число состояний в два раза. В итоге 300-кубитный компьютер позволил бы нам получить число квантовых состояний, большее, чем число частиц в нашей Вселенной.
Дальше |
Проверить |
Узнать результат |
Вопрос из курса физики: раз кубит находится в состоянии суперпозиции, то как будут между собой взаимодействовать несколько кубитов? Подсказка: представьте несколько подброшенных монеток.
Две монетки могут столкнуться друг с другом :) Два кубита ведут себя точно так же — они начинают оказывать влияние друг на друга.
Квантовая запутанность позволяет, измерив один кубит, одновременно получить значения всех остальных кубитов. Они сцеплены по принципу квантовой запутанности — такое построение важно для решения некоторых квантовых алгоритмов.
Например, у нас есть огромная необработанная база данных, к которой невозможно применить дихотомию — только перебор каждой карточки по очереди. Квантовая система с помощью алгоритма Гровера сможет найти нужные строки на основе интерференции.
Квантовая запутанность позволяет, измерив один кубит, одновременно получить значения всех остальных кубитов. Они сцеплены по принципу квантовой запутанности — такое построение важно для решения некоторых квантовых алгоритмов.
Например, у нас есть огромная необработанная база данных, к которой невозможно применить дихотомию — только перебор каждой карточки по очереди. Квантовая система с помощью алгоритма Гровера сможет найти нужные строки на основе интерференции.
Верно! Квантовая запутанность позволяет, измерив один кубит, одновременно получить значения всех остальных кубитов. Они сцеплены по принципу квантовой запутанности — такое построение важно для решения некоторых квантовых алгоритмов.
Например, у нас есть огромная необработанная база данных, к которой невозможно применить дихотомию — только перебор каждой карточки по очереди. Квантовая система с помощью алгоритма Гровера сможет найти нужные строки на основе интерференции.
Например, у нас есть огромная необработанная база данных, к которой невозможно применить дихотомию — только перебор каждой карточки по очереди. Квантовая система с помощью алгоритма Гровера сможет найти нужные строки на основе интерференции.
Дальше |
Проверить |
Узнать результат |
В компьютерах биты реализованы с помощью транзисторов. Кубитам же нужна другая аппаратная часть — квантовый объект. Как он устроен?
Верно! Физикам потребовалось много времени, чтобы воплотить теорию квантовых вычислений в физическом объекте.
По сути, всё сводится к тому, что кубиты удерживают кванты, — это состояние называют временем когерентности кубита.
В зависимости от используемой аппаратной платформы (фотоны, ионы, электронные спины) длительность вычисления может составлять от пары наносекунд до нескольких секунд. За это время можно производить тысячи операций.
По сути, всё сводится к тому, что кубиты удерживают кванты, — это состояние называют временем когерентности кубита.
В зависимости от используемой аппаратной платформы (фотоны, ионы, электронные спины) длительность вычисления может составлять от пары наносекунд до нескольких секунд. За это время можно производить тысячи операций.
Не угадали — квантов может быть много, и значения им задают законы макромира.
Физикам потребовалось много времени, чтобы воплотить теорию квантовых вычислений в физическом объекте. Общее устройство сводится к тому, что кубиты удерживают кванты, — это состояние называют временем когерентности кубита.
В зависимости от используемой аппаратной платформы (фотоны, ионы, электронные спины) длительность вычисления может составлять от пары наносекунд до нескольких секунд. За это время можно производить тысячи операций.
Физикам потребовалось много времени, чтобы воплотить теорию квантовых вычислений в физическом объекте. Общее устройство сводится к тому, что кубиты удерживают кванты, — это состояние называют временем когерентности кубита.
В зависимости от используемой аппаратной платформы (фотоны, ионы, электронные спины) длительность вычисления может составлять от пары наносекунд до нескольких секунд. За это время можно производить тысячи операций.
Было бы круто, но всё работает по-другому. Физикам потребовалось много времени, чтобы воплотить теорию квантовых вычислений в физическом объекте. Общее устройство сводится к тому, что кубиты удерживают кванты, — это состояние называют временем когерентности кубита.
В зависимости от используемой аппаратной платформы (фотоны, ионы, электронные спины) длительность вычисления может составлять от пары наносекунд до нескольких секунд. За это время можно производить тысячи операций.
В зависимости от используемой аппаратной платформы (фотоны, ионы, электронные спины) длительность вычисления может составлять от пары наносекунд до нескольких секунд. За это время можно производить тысячи операций.
Дальше |
Проверить |
Узнать результат |
Окей, мы разобрались, что кванты «удерживаются» для вычислений в специальных объектах. Но зачем?
Подходят все, вопрос в том, как их «спрятать» от влияния внешнего мира.
Процесс деградации квантового состояния называют декогеренцией — это потеря системой своих свойств из-за окружающей среды.
Кванты настолько чувствительны, что на них могут влиять не только магнитные и радиоволны, но даже квантовые частицы с дальних планет, — законы в квантовом мире работают совсем по-другому.
Процесс деградации квантового состояния называют декогеренцией — это потеря системой своих свойств из-за окружающей среды.
Кванты настолько чувствительны, что на них могут влиять не только магнитные и радиоволны, но даже квантовые частицы с дальних планет, — законы в квантовом мире работают совсем по-другому.
Верно! Процесс деградации квантового состояния называют декогеренцией — это потеря системой своих свойств из-за окружающей среды.
Кванты настолько чувствительны, что на них могут влиять не только магнитные и радиоволны, но даже квантовые частицы с дальних планет, — законы в квантовом мире работают совсем по-другому.
Кванты настолько чувствительны, что на них могут влиять не только магнитные и радиоволны, но даже квантовые частицы с дальних планет, — законы в квантовом мире работают совсем по-другому.
До антиматерии нам ещё далеко. Процесс деградации квантового состояния называют декогеренцией — это потеря системой своих свойств из-за окружающей среды.
Кванты настолько чувствительны, что на них могут влиять не только магнитные и радиоволны, но даже квантовые частицы с дальних планет, — законы в квантовом мире работают совсем по-другому.
Кванты настолько чувствительны, что на них могут влиять не только магнитные и радиоволны, но даже квантовые частицы с дальних планет, — законы в квантовом мире работают совсем по-другому.
Дальше |
Проверить |
Узнать результат |
Один из способов измерить мощность квантового компьютера — это достигнуть «квантового превосходства», когда устройство может решить проблему, недоступную обычному компьютеру. Прецеденты уже были?
Действительно есть нюансы.
Специалисты из Google в 2019 году опубликовали в журнале Nature работу, в которой сообщили о достижении квантового превосходства на процессоре Sycamore, работающем на 54 кубитах. Он смог всего за 200 секунд решить сложную задачу, на которую суперкомпьютеру Summit потребовалось бы 10 тысяч лет.
Цифры впечатляющие — только задача была очень специфичная и с очень узким практическим применением. А Summit при оптимизации кода смог бы решить её не за 10 тысяч лет, а всего за пару дней.
Технически в Google действительно смогли достигнуть квантового превосходства, но размытость формулировки позволяет каждому изобретателю делать подобные заявления.
Например, в 2020 году в Китае тоже объявили о достижении квантового превосходства — их компьютер работает на фотонах, а не на сверхпроводниках, как у Google. А в 2021 году о таком достижении сообщила IBM.
Специалисты из Google в 2019 году опубликовали в журнале Nature работу, в которой сообщили о достижении квантового превосходства на процессоре Sycamore, работающем на 54 кубитах. Он смог всего за 200 секунд решить сложную задачу, на которую суперкомпьютеру Summit потребовалось бы 10 тысяч лет.
Цифры впечатляющие — только задача была очень специфичная и с очень узким практическим применением. А Summit при оптимизации кода смог бы решить её не за 10 тысяч лет, а всего за пару дней.
Технически в Google действительно смогли достигнуть квантового превосходства, но размытость формулировки позволяет каждому изобретателю делать подобные заявления.
Например, в 2020 году в Китае тоже объявили о достижении квантового превосходства — их компьютер работает на фотонах, а не на сверхпроводниках, как у Google. А в 2021 году о таком достижении сообщила IBM.
Технически в Google действительно смогли достигнуть квантового превосходства. В 2019 году специалисты компании опубликовали в журнале Nature работу, в которой сообщили о достижении квантового превосходства на процессоре Sycamore, работающем на 54 кубитах. Он смог всего за 200 секунд решить сложную задачу, на которую суперкомпьютеру Summit потребовалось бы 10 тысяч лет.
Цифры впечатляющие, но есть нюанс — задача была очень специфичная и с очень узким практическим применением. А Summit при оптимизации кода смог бы решить её не за 10 тысяч лет, а всего за пару дней.
Размытость формулировки позволяет каждому изобретателю делать подобные заявления. Например, в 2020 году в Китае тоже объявили о достижении квантового превосходства — их компьютер работает на фотонах, а не на сверхпроводниках, как у Google. В 2021 году о достижении квантового превосходства сообщила IBM.
Цифры впечатляющие, но есть нюанс — задача была очень специфичная и с очень узким практическим применением. А Summit при оптимизации кода смог бы решить её не за 10 тысяч лет, а всего за пару дней.
Размытость формулировки позволяет каждому изобретателю делать подобные заявления. Например, в 2020 году в Китае тоже объявили о достижении квантового превосходства — их компьютер работает на фотонах, а не на сверхпроводниках, как у Google. В 2021 году о достижении квантового превосходства сообщила IBM.
Дальше |
Проверить |
Узнать результат |
Полноценный квантовый компьютер ещё не изобрели, но есть шанс, что, когда он появится, современная криптография будет дискредитирована. Это касается не только паролей от почты, но и блокчейна. Что, всё и правда так плохо?
Не всё так просто. Большинство современных криптографических алгоритмов (SSL, HTTPS и другие) квантово неустойчивы, потому что разрабатывались для двоичных систем, в которых, например, посчитать дискретный логарифм практически нереально. На многокубитном квантовом компьютере такой «взлом» сделать намного проще — хоть он и предсказывает вероятность, но, прогнав алгоритм несколько раз, можно выявить закономерности и найти ключ.
Эту проблему осознают эксперты по кибербезопасности, программисты и учёные, поэтому появляются алгоритмы с заделом на то, что рано или поздно многокубитный квантовый компьютер будет получен и вся современная криптография окажется скомпрометирована.
Эту проблему осознают эксперты по кибербезопасности, программисты и учёные, поэтому появляются алгоритмы с заделом на то, что рано или поздно многокубитный квантовый компьютер будет получен и вся современная криптография окажется скомпрометирована.
Вполне! Большинство современных криптографических алгоритмов (SSL, HTTPS и другие) квантово неустойчивы, потому что разрабатывались для двоичных систем, в которых, например, посчитать дискретный логарифм практически нереально. На многокубитном квантовом компьютере такой «взлом» сделать намного проще — хоть он и предсказывает вероятность, но, прогнав алгоритм несколько раз, можно выявить закономерности и найти ключ.
Эту проблему осознают эксперты по кибербезопасности, программисты и учёные, поэтому появляются алгоритмы с заделом на то, что рано или поздно многокубитный квантовый компьютер будет получен и вся современная криптография окажется скомпрометирована.
Эту проблему осознают эксперты по кибербезопасности, программисты и учёные, поэтому появляются алгоритмы с заделом на то, что рано или поздно многокубитный квантовый компьютер будет получен и вся современная криптография окажется скомпрометирована.
Дальше |
Проверить |
Узнать результат |
Квантовые вычисления можно делать даже на домашнем ноутбуке.
Верно! Обычный компьютер на Windows или Linux может симулировать квантовые вычисления. Правда, считать будет очень долго, поэтому смысла в таком подходе нет — кроме освоения и проектирования квантовых алгоритмов.
Кому интересно — есть язык Quipper, с которым можно поупражняться в квантовых вычислениях, а здесь обсуждают эмуляцию.
Кому интересно — есть язык Quipper, с которым можно поупражняться в квантовых вычислениях, а здесь обсуждают эмуляцию.
А вот и нет :) Обычный компьютер на Windows или Linux может симулировать квантовые вычисления. Правда, считать будет очень долго, поэтому смысла в таком подходе нет — кроме освоения и проектирования квантовых алгоритмов.
Кому интересно — есть язык Quipper, с которым можно поупражняться в квантовых вычислениях, а здесь обсуждают эмуляцию.
Кому интересно — есть язык Quipper, с которым можно поупражняться в квантовых вычислениях, а здесь обсуждают эмуляцию.
Дальше |
Проверить |
Узнать результат |
Квантовые компьютеры прямо сейчас объединяют в сети: они могут передавать друг другу квантовую информацию на расстоянии.
Да! У IBM уже есть квантовые компьютеры, которые связаны с интернетом (ссылка не работает из России), но информацию они преобразовывают в двоичный код — передавать кубиты через маршрутизаторы и точки обмена трафиком вряд ли получится.
Зато есть другие варианты — квантовые каналы, работающие на фотонах. Сейчас это не очень оптимальный вариант, потому что каждые 10 километров частицы будут терять свои свойства и потребуется сложная система для обслуживания. Есть ещё идея делать космические спутники — приёмники, но это очень дорого.
Зато есть другие варианты — квантовые каналы, работающие на фотонах. Сейчас это не очень оптимальный вариант, потому что каждые 10 километров частицы будут терять свои свойства и потребуется сложная система для обслуживания. Есть ещё идея делать космические спутники — приёмники, но это очень дорого.
Уже появились :) У IBM есть квантовые компьютеры, которые связаны с интернетом (ссылка не работает из России), но информацию они преобразовывают в двоичный код — передавать кубиты через маршрутизаторы и точки обмена трафиком вряд ли получится.
Зато есть другие варианты — квантовые каналы, работающие на фотонах. Сейчас это не очень оптимальный вариант, потому что каждые 10 километров частицы будут терять свои свойства и потребуется сложная система для обслуживания. Есть ещё идея делать космические спутники — приёмники, но это очень дорого.
Зато есть другие варианты — квантовые каналы, работающие на фотонах. Сейчас это не очень оптимальный вариант, потому что каждые 10 километров частицы будут терять свои свойства и потребуется сложная система для обслуживания. Есть ещё идея делать космические спутники — приёмники, но это очень дорого.
Дальше |
Проверить |
Узнать результат |
Финальный вопрос. Если квантовые компьютеры работают с вероятностями, то в них не бывает ошибок, верно?
По фундаментальным законам физики копировать информацию нельзя, но её можно дублировать на несколько атомов. В логических кубитах данные защищены от ошибок, но во время вычислений могут возникать сбои.
Накопление ошибок в процессе вычислений — одна из главных проблем квантового компьютера. Алгоритм Шора частично решает эту проблему, но из-за него неправильная диагностика может привести к «поломке» всей системы.
Недавно учёные из Инсбрукского университета предложили интересный способ решения этой проблемы — сделать два вычислительных элемента на устойчивых к ошибкам квантовых битах, чтобы строить логические элементы. В результате ошибки можно находить и корректировать, не меняя состояния квантов.
Накопление ошибок в процессе вычислений — одна из главных проблем квантового компьютера. Алгоритм Шора частично решает эту проблему, но из-за него неправильная диагностика может привести к «поломке» всей системы.
Недавно учёные из Инсбрукского университета предложили интересный способ решения этой проблемы — сделать два вычислительных элемента на устойчивых к ошибкам квантовых битах, чтобы строить логические элементы. В результате ошибки можно находить и корректировать, не меняя состояния квантов.
Верно! По фундаментальным законам физики копировать информацию нельзя, но её можно дублировать на несколько атомов. В логических кубитах данные защищены от ошибок, но во время вычислений могут возникать сбои.
Накопление ошибок в процессе вычислений — одна из главных проблем квантового компьютера. Алгоритм Шора частично решает эту проблему, но из-за него неправильная диагностика может привести к «поломке» всей системы.
Недавно учёные из Инсбрукского университета предложили интересный способ решения этой проблемы — сделать два вычислительных элемента на устойчивых к ошибкам квантовых битах, чтобы строить логические элементы. В результате ошибки можно находить и корректировать, не меняя состояния квантов.
Накопление ошибок в процессе вычислений — одна из главных проблем квантового компьютера. Алгоритм Шора частично решает эту проблему, но из-за него неправильная диагностика может привести к «поломке» всей системы.
Недавно учёные из Инсбрукского университета предложили интересный способ решения этой проблемы — сделать два вычислительных элемента на устойчивых к ошибкам квантовых битах, чтобы строить логические элементы. В результате ошибки можно находить и корректировать, не меняя состояния квантов.
Дальше |
Проверить |
Узнать результат |
Кажется, квантовая запутанность существует не только в макромире, но и в этом тесте :) Зато после его прохождения вы получили конкретный результат и теперь можете пройти его снова, чтобы выбить 10 из 10. Примерно так и решаются задачи с помощью квантовых компьютеров — подробнее об этом рассказывается в 24-м выпуске подкаста «Люди и код». Кстати, ещё у нас есть чумовая статья о пределах скорости компьютеров.
Пройти ещё раз |
Вам удалось правильно ответить на часть вопросов, а остальные оказались в другом вероятностном поле. Чтобы выбить 10 из 10, пройдите этот тест снова — примерно так и решаются задачи с помощью квантовых компьютеров. Подробнее об этом рассказывается в 24-м выпуске подкаста «Люди и код». Кстати, ещё у нас есть чумовая статья о пределах скорости компьютеров.
Пройти ещё раз |
Кажется, ваше хобби — изучать квантовые миры и следить за последними событиями в мире науки. Достойный результат, а узнать больше о квантовых компьютерах можно из 24-го выпуска подкаста «Люди и код». Кстати, ещё у нас есть чумовая статья о пределах скорости компьютеров.
Пройти ещё раз |
Вы достигли квантового превосходства. Можем предположить, что вы либо сразу ответили правильно на вопросы теста, либо проходили его повторно. В любом случае это теория вероятностей — примерно так и решаются задачи с помощью квантовых компьютеров. Подробнее об этом можно узнать в 24-м выпуске подкаста «Люди и код». Кстати, ещё у нас есть чумовая статья о пределах скорости компьютеров.
Пройти ещё раз |
Понравилась статья?
Да