Код
#статьи

Что такое факториал и как его вычислить

Статья, после которой вы начнёте щёлкать факториалы как орешки.

Иллюстрация: Катя Павловская для Skillbox Media

Даже если вы уже давно окончили школу, факториалы всё равно могут доставить немало приятных флешбэков — например, если вы обучаетесь программированию и знакомитесь с задачками на рекурсию или комбинаторику. Поэтому мы решили максимально просто объяснить, что такое факториал, как его вычислять и зачем он вообще нужен.

Эта статья будет полезна как опытным программистам, которые хотят освежить знания, так и тем, кто ещё учится: школьникам, студентам и совсем зелёным джунам.

Содержание:

Что такое факториал

Факториал числа n — это произведение всех натуральных чисел от единицы до n. Обозначается факториал символом восклицательного знака: !.

Это определение из учебника, и оно пока звучит сложновато — неясно, зачем эти факториалы вообще нужны и как они могут пригодиться в науке и технике. Но об этом чуть позже — для начала давайте посмотрим на примеры факториалов:

Изображение: Skillbox Media

Чтобы вычислить их, нам нужно перемножить все числа от единицы до числа, стоящего под знаком факториала — так гласит определение. Получаем выражения:

Изображение: Skillbox Media

Ещё в математическом определении сказано, что факториал не может быть отрицательным или дробным — то есть вот такие факториалы вычислить нельзя:

Изображение: Skillbox Media

Для чего нужен факториал

Факториалы незаменимы там, где нужно быстро посчитать количество комбинаций и сочетаний разных предметов. В математике этому посвящён даже целый раздел — комбинаторика. Её методы используют много где: от лингвистики до криптографии и анализа ДНК. И во всех этих сферах факториал помогает упрощать сложные вычисления.

Разберём на примере, как это работает.

Допустим, у вас есть пять шоколадок и вы решили раздать их пяти друзьям — каждому по одной. Задача — выяснить, сколько существует способов раздать эти шоколадки. Начинаем размышлять:

  • первую шоколадку можно отдать одному из пяти друзей;
  • вторую — одному из четырёх друзей, потому что один уже получил свою шоколадку;
  • третью — одному из трёх, потому что двое уже наслаждаются своими шоколадками;
  • четвёртую — одному из двух;
  • пятую — последнему другу.

Получается, что способов раздать первую шоколадку — 5, вторую — 4, третью — 3, четвёртую — 2, а пятую — всего 1. По правилам математики, чтобы выяснить общее количество всех вариантов, нужно перемножить их между собой. Ну а кто мы такие, чтобы с этими правилами спорить?

Изображение: Skillbox Media

Смотрим на выражение выше и понимаем: ведь оно идеально вписывается в определение факториала — произведение натуральных чисел от одного до n (в нашем случае n равно 5). Следовательно, это выражение можно коротко и изящно записать в виде факториала:

Изображение: Skillbox Media

Выходит, что всего способов раздать пять шоколадок пяти друзьям существует 120. Вот как может выглядеть один из них:

Иллюстрация: Катя Павловская для Skillbox Media

Конечно, в жизни вам вряд ли придётся считать количество способов раздать друзьям шоколадки. Но, например, в статистике, теории вероятностей, матанализе и программировании факториалы используют сплошь и рядом. Так что, если видите себя в будущем на матмехе или, на худой конец, в IT, то лучше познакомиться с ними хотя бы бегло.

Какие свойства и формулы есть у факториалов

Так как факториалы используются в разных областях математики, свойств у них довольно много — каждая область привносит какие-то свои методы вычислений. Одно из свойств вы уже знаете: факториал — это всегда целое положительное число. Вот ещё несколько, которые стоит запомнить:

  • Факториал нуля равен единице — 0! = 1.
  • Факториал единицы тоже равен единице: 1! = 1.
  • Рекурсия: n! = (n – 1)! × n. Это основное свойство факториалов, о нём мы чуть подробнее поговорим дальше.

Мы видим, что каждое свойство описывается какой-то формулой — и некоторые из этих формул могут быть весьма полезны. Они позволяют нам находить факториалы проще и быстрее, чем простым перемножением натуральных чисел. Разберём эти формулы тоже.

Формула Стирлинга

Чтобы вычислить факториал, не используя так много операций умножения, придумали формулу Стирлинга. Вот как она выглядит:

Изображение: Skillbox Media

Выглядит страшно, но на самом деле она очень полезная. Её используют, когда хотят приблизительно узнать факториал большого числа. Обычным способом это будет сделать сложно даже мощному компьютеру — например, попробуйте посчитать в онлайн-калькуляторе факториал числа 10 024 (спойлер: это может занять несколько часов и даже дней).

Онлайн-калькулятор не справился с вычислением такого большого числа, как факториал 10 024
Скришнот: «Контрольная работа РУ — калькуляторы онлайн» / Skillbox Media

Давайте попробуем вычислить факториал числа 6 по этой формуле:

Изображение: Skillbox Media

Число e примерно равно 2,71, а π — 3,14. Подставляем их в выражение и получаем ответ:

Изображение: Skillbox Media

Получили приближённое значение настоящего факториала, который равен 720. Но можно сделать ответ и более точным. Для этого нужно добавить больше знаков после запятой всем переменным — например, если взять 20 знаков, то ответ будет таким:

Изображение: Skillbox Media

Это уже больше похоже на правду. Хотя погрешность всё равно есть.

Рекуррентная формула

Рекуррентная формула позволяет вычислить факториал числа n, основываясь на факториале предыдущего числа — (n – 1). Выглядит она так:

Изображение: Skillbox Media

В целом рекуррентная формула не приносит нам большой пользы, так как всё равно приходится вычислять факториал предыдущего числа. Если он равен какому-то большому числу (например, 100), то использование формулы теряет смысл — слишком уж много вычислений это потребует.

Рекуррентная формула основана на главном свойстве факториалов — рекурсии: n! = (n – 1)! × n. Это свойство особенно полезно при решении задач по комбинаторике: так мы можем быстро сокращать факториалы и упрощать выражения.

Однако рекуррентная формула хорошо подходит для алгоритмов — в частности, для программирования. Мы можем задать начальное значение: например, что 0! = 1 или 1! = 1, а затем считать следующие факториалы по формуле:

Изображение: Skillbox Media

Получим алгоритм для вычисления факториалов. Не очень эффективный, но простой.

Давайте вычислим по этой формуле факториал числа 4. Сначала распишем рекуррентную формулу до базового значения — факториала числа 1:

Изображение: Skillbox Media

Можно записать это и в сокращённом виде:

Изображение: Skillbox Media

Теперь последовательно подставляем значение факториала, которое мы уже знаем, и вычисляем результат:

Изображение: Skillbox Media

Получили ответ — 24. Ничего сложного, просто перемножаем числа.

Кстати, всю эту формулу можно обернуть в реально работающую функцию на языке Python:

def factorial(n): # Определяем функцию
    if n == 0 or n == 1: # Базовый случай
        return 1
    else: # Рекуррентный случай
        return factorial(n-1) * n # Вызываем эту же функцию, но с меньшим аргументом

print(factorial(4)) # Печатаем факториал 4
# Вывод:
# 24

Можете попробовать запустить её в онлайн-интерпретаторе и посмотреть, как работает. Тут есть один нюанс: Python не даст вам посчитать факториал числа больше 998, так как у него есть ограничение на количество вызовов функции — в программировании это называется глубиной рекурсии.

Шпаргалка: таблица факториалов

Чтобы быстро находить, чему равен факториал, можно запомнить или сохранить в заметки вот такую табличку. Она рассчитана всего на 12 чисел, но для большинства учебных задач этого хватит.

1!1
2!2
3!6
4!24
5!120
6!720
7!5040
8!40 320
9!362 880
10!3 628 800
11!39 916 800
12!479 001 600

Примеры задач на факториалы с решениями

С теорией вроде разобрались — теперь попробуем решить несколько задач с факториалами, чтобы закрепить знания на практике.

Умножение факториалов

Задача: перемножить два факториала.

Изображение: Skillbox Media

Решение:

Сперва нужно вычислить значения факториалов, а затем перемножить полученные значения:

Изображение: Skillbox Media

Обратите внимание: во второй строке мы применили рекуррентную формулу, чтобы быстрее вычислить факториал числа 7.

Вычитание факториалов

Задача: вычесть из одного факториала другой.

Изображение: Skillbox Media

Решение:

Используем тот же подход, что и в предыдущей задаче: сначала вычисляем факториалы, а затем получаем ответ на всё выражение.

Изображение: Skillbox Media

Вроде бы ничего сложного, главное — не запутаться в умножении.

Перемножение факториалов

Задача: умножить один факториал на другой:

Изображение: Skillbox Media

Решение:

Вычисляем факториалы, потом перемножаем их значения:

Изображение: Skillbox Media

Во второй строке мы воспользовались таблицей выше и быстро нашли значение факториала от числа 8.

Сокращение факториалов

Задача: сократить дробь и вычислить её значение.

Изображение: Skillbox Media

Решение:

Здесь мы воспользуемся рекуррентной формулой для вычисления факториала и разложим верхний факториал на множители:

Изображение: Skillbox Media

В первой строке мы применили рекуррентную формулу два раза, а во второй — просто сократили одинаковые факториалы в числителе и в знаменателе.

Разложение факториалов

Задача: сократить дробь.

Изображение: Skillbox Media

Решение:

Хотя здесь нет конкретных чисел, но принцип решения остаётся таким же: используем рекуррентную формулу и сокращаем одинаковые значения в числителе и знаменателе.

Изображение: Skillbox Media

Главное — не запутаться и правильно применить рекуррентную формулу.

Что запомнить

  • Факториал — это произведение всех натуральных чисел от 1 до данного числа. Например, факториал числа 5 будет равен 1 × 2 × 3 × 4 × 5 = 120.
  • Его используют во многих областях науки — например, комбинаторике, теории вероятностей и математическом анализе.
  • Помимо стандартной формулы для вычисления факториала можно использовать формулы Стирлинга и рекуррентную формулу.
  • Формула Стирлинга нужна для того, чтобы посчитать факториал без большого числа операций умножения.
  • Рекуррентная формула позволяет вычислить факториал на основе предыдущего факториала.

Изучайте IT на практике — бесплатно

Курсы за 2990 0 р.

Я не знаю, с чего начать
Жизнь можно сделать лучше!
Освойте востребованную профессию, зарабатывайте больше и получайте от работы удовольствие.
Каталог возможностей
Понравилась статья?
Да

Пользуясь нашим сайтом, вы соглашаетесь с тем, что мы используем cookies 🍪

Ссылка скопирована