Шмидт Product analyst Team Lead в Citrix (США) и Wrike
Профессия Data Scientist
Освойте Data Science с нуля. Вы попробуете силы в аналитике данных и машинном обучении, подробно изучите направление, которое нравится вам больше. Отточите навыки на реальных проектах и станете востребованным специалистом.
Начните учиться бесплатно!
- Бесплатный доступ к 3 модулям
- Трудоустройство через 9 месяцев
- Авторы курса эксперты из Сбера, Visa, Wildberries, ВТБ и EPAM
- 2 специализации на выбор
- до 9 проектов в портфолио
- Бесплатный доступ к инфраструктуре Yandex Cloud для выполнения практики
О профессии
Работа с данными — процесс, в котором каждый участник команды выполняет свою задачу. Аналитик помогает бизнесу принимать решения, а специалист по машинному обучению, или ML-инженер, создаёт нейросети, которые чего только не умеют — распознают тексты, фотографии и даже пишут стихи.
Независимо от роли все программируют на Python, разбираются в математике, статистике и говорят на языке данных. Поэтому иногда таких специалистов называют просто Data Scientist.
- Более 1 300
вакансий для специалистов по Data Science открыто на hh.ru
- От 120 000 рублей
зарплата после 9 месяцев обучения на платформе
- «Райффайзенбанк», «Тинькофф Банк», Сбер, ВТБ, VK
компании, в которые устроились участники курса
Мы постоянно обновляем курс, чтобы вы получали навыки, которые прямо сейчас нужны работодателям. Последняя дата обновления — январь 2024 года.
Что даёт профессия Data Scientist?
Этот курс подойдёт «гуманитариям»? А если мне уже не 20 лет?
Как быстро окупится обучение на платформе
Показываем, как будет расти ваш заработок вместе с опытом. И сколько времени потребуется, чтобы окупить вложения в курс.
На позиции Junior вы заработаете столько же, сколько стоит курс,
за 5 месяцев
Зарплаты дата-сайентистов,
по данным HH.ru- Junior Начало работы
- Middle Опыт 9 месяцев
- Senior Опыт 24 месяца
Попробуйте бесплатно!
Покупка курса ответственное решение. Поэтому вы можете бесплатно познакомиться с первыми тремя модулями, чтобы оценить свои силы и посмотреть, как устроено обучение на платформе в Skillbox изнутри.
За время пробного периода вы познакомитесь с основными профессиями в Data Science, научитесь собирать бизнес-требования и работать в Excel.
Кому подойдёт этот курс
- Новичкам
С нуля освоите Python, SQL, научитесь собирать и анализировать данные. Разберётесь в основах статистики, теории вероятности и математике — даже если вы заядлый «гуманитарий». Решите задачи на основе реальных кейсов и добавите проекты в портфолио. Устроитесь на стажировку по выбранной специальности и начнёте зарабатывать ещё до окончания курса.
- Программистам
Подтянете математику, статистику, аналитическое и алгоритмическое мышление, научитесь выявлять потребности бизнеса. Получите опыт работы с моделями машинного обучения, будете применять Python для решения задач с данными. Пройдёте процесс от сбора данных до запуска модели.
- Начинающим аналитикам
Вы научитесь выдвигать гипотезы и делать выводы на основе данных, писать эффективный код на Python и превращать сырые данные в полезную информацию для компании. Сможете обучать модели и прогнозировать результаты. Отшлифуете знания, увеличите скорость своей работы и добьётесь повышения.
Кем вы станете после курса?
- Вариант 1. Специалист по машинному обучению
Будете анализировать большие объёмы информации, создавать модели для прогнозирования в бизнесе, медицине, промышленности. Обучать нейросети, создавать аналитические системы и рекомендательные сервисы на основе алгоритмов машинного обучения. Продолжите профессиональное развитие в сфере обработки естественного языка или компьютерного зрения.
- Вариант 2. Аналитик данных
Будете помогать бизнесу принимать верные решения на основе данных. Собирать информацию и анализировать её, находить аномалии в метриках. На основе исследований будете выявлять закономерности, строить гипотезы и проверять их жизнеспособность с помощью моделирования. Научитесь визуализировать результаты работы в виде графиков и диаграмм.
Записаться на курс или получить бесплатную консультацию
Трудоустройство
85% пользователей находят работу в течение 3 месяцев после обучения.
По данным исследования Высшей школы экономики
- Поможем оформить резюме и портфолио
- Подготовим к собеседованиям
- Пригласим в закрытый канал с вакансиями
Поможем найти работу
или вернём деньги
Найдёте первых заказчиков в «Скил Маркете»
- Реальные заказы
- Первые клиенты
- Кейсы в портфолио
- Совместные проекты
«Скил Маркет» — это комьюнити Skillbox в Telegram, в котором участники публикуют заказы на коммерческие и некоммерческие проекты. Там вы сможете откликаться на задачи или искать людей себе в команду для совместных проектов.
О Skillbox
Как проходит обучение на платформе
Уровни курса
Содержание курсов
Вас ждут 100+ тематических модулей с различным уровнем сложности, тесты, лонгриды и практические работы. Вы выполните 6 учебных проектов на больших данных и презентуете 3 итоговых работы на основе данных от реальных компаний.
- 12 месяцев обучения
- 100+ практических работ
Первый уровень: базовая подготовка
-
Введение в Data Science
-
- Познакомитесь с основными направлениями Data Science, узнаете, какие задачи решают дата-аналитики, дата-инженеры и специалисты по машинному обучению.
- Пройдёте все этапы работы с данными. Научитесь выявлять проблемы, собирать бизнес-требования. Будете выгружать данные из различных источников, проводить разведочный анализ и готовить данные к дальнейшему использованию. Обучите и внедрите готовую модель, попробуете себя в роли продуктового и маркетингового аналитика. Узнаете, как формулировать и проверять гипотезы. Освоите базовые инструменты для работы: Python, SQL, Excel, Power Bi.
-
Второй уровень: специализация и трудоустройство
-
Специализация 1: Machine Learning — машинное обучение
-
- Machine Learning. Junior. Познакомитесь с алгоритмами машинного обучения для решения задач регрессии, классификации и кластеризации. Построите и обучите свою первую нейронную сеть. Научитесь подбирать параметры модели, оценивать качество и улучшать её, а также выводить результат в Production.
-
-
Специализация 2: Data Analyst — дата-аналитик
-
- Data Analyst. Junior. Познакомитесь с базовыми методами анализа на примере анализа данных продаж. Пройдёте основы маркетинговой, BI и продуктовой аналитики. Прокачаете навыки работы в Excel, Python и Power BI. Будете уметь формулировать и тестировать гипотезы и презентовать результаты заказчику.
-
-
✦ Трудоустройство с помощью Центра карьеры
-
- Карьерный консультант поможет подготовиться к собеседованию в компании-партнёре. Разберёте частые вопросы и научитесь меньше переживать на интервью.
- Напишете сопроводительное письмо и грамотно оформите резюме.
- Будете готовы пройти собеседование — карьерный консультант организует встречу с работодателем.
- На интервью презентуете проекты, над которыми вы работали на курсе, а знания и навыки пригодятся для выполнения тестовых задач.
-
Третий уровень: повышение квалификации
-
Специализация 1: Machine Learning PRO
-
- Machine Learning. Advanced. Освоите алгоритмы для построения рекомендательных систем и прогнозирования временных рядов. Научитесь применять ансамблевые методы, стекинг, бустинг, а также лучшие практики кросс-валидации, мониторинга и пайплайна ML-разработки.
- Deep Learning — глубокое обучение. Научитесь работать с нейросетями: подробно узнаете, как они устроены, будете обучать модели, строить и тестировать архитектуры, передавать данные в нейросеть и настраивать параметры.
- Трек 1. Обработка естественного языка, или NLP. Научитесь применять алгоритмы машинного обучения и нейронные сети для обработки естественного языка. Узнаете, как анализировать тональность текстов, классифицировать их, распознавать речь.
- Трек 2. Компьютерное зрение — Computer Vision. С помощью алгоритмов машинного обучения и нейросетей будете распознавать объекты, лица и эмоции, классифицировать и сегментировать изображения. Научитесь применять и адаптировать готовые модели CV для своих целей.
-
-
Специализация 2: Data Analyst PRO
-
- Трек 1. Продуктовая аналитика. Будете обрабатывать данные, исследовать взаимодействие пользователей с продуктом, интерпретировать собранную информацию. Полученные результаты помогут решить задачи бизнеса.
- Трек 2. Маркетинговая аналитика. Узнаете, как настраивать веб- и сквозную аналитику, создавать воронки продаж, анализировать поведение пользователей на сайте.
- Трек 3. BI-аналитика. Научитесь создавать хранилища данных, проектировать базы данных на языке SQL и работать с таблицами на продвинутом уровне. Будете решать бизнес-задачи с помощью аналитики, чистить данные, правильно их хранить и визуализировать.
-
Дополнительные курсы
-
Основы статистики и теории вероятностей
-
- Поймёте принципы работы со случайными величинами и событиями. Познакомитесь с некоторыми видами распределений и статистическими тестами, которые пригодятся при составлении моделей и проверке гипотез.
-
-
Основы математики для data science
-
- Получите базовые знания по математике для работы с машинным обучением. Поймёте, что такое аппроксимация, интерполяция, функции, регрессии, матрицы и векторы. Научитесь работать с математическими сущностями в Python-библиотеке SymPy.
-
Уже прошли какие-либо курсы Skillbox?
Скажите об этом менеджеру — платить за них не придётся.
Получить презентацию курса и консультацию специалиста
Спикеры
Шмидт Product analyst Team Lead в Citrix (США) и Wrike
Фаттахова Автор и спикер курса Machine Learning Engineer. AI Product Manager, SberData, Сбербанк
Ершов Data Solutions Manager, VISA
Самигуллин Автор «Профессии Data Analyst». Product Intelligence team lead @ EQ SberDevices. 5 лет в промышленном анализе данных
Ерин Data Scientist в Yousician. Программный директор курса Data Science PRO
Железной Middle+ Data Engineer, Wildberries
Сизов Team Lead команды «Модели управления жизненным циклом клиента» в ВТБ. Спикер курса «Основы статистики и теории вероятностей»
Горяинов Доцент Московского авиационного института. Спикер курса «Основы статистики и теории вероятностей»
Малиборская Основатель маркетингового и дизайн агентства EZmarket. Спикер курса Data Analyst. Junior
Кулаев Руководитель команды VK. Спикер курса Data Analyst. Junior
Николаева Аналитик VK. Спикер курса Data Analyst. Junior
Булгаков Эксперт операционной поддержки продаж. Спикер курса Data Analyst. Junior
Сумина Программист-исследователь. Спикер курса Data Analyst. Junior
Ваше резюме после курса
Data Scientist
от 90 000 ₽
Инструменты
Навыки
- Извлекаю данные из различных источников: файлы, API, базы данных
- Очищаю данные
- Работаю с Big Data
- Провожу разведывательный анализ данных
- Визуализирую результаты анализа в виде дашбордов
- Формулирую и проверяю гипотезы
- ML-инженер: строю модели машинного обучения с учителем и без
- ML-инженер: внедряю модели и оцениваю их качество
Проекты
- Предсказание оттока в соцсети для музыкантов
- Анализ мобильных приложений
- Работа с данными сервиса аренды автомобилей
- Свободное исследование
Итоговые проекты
- Старт курса: 25 ноября
- Осталось: 6 мест
Начните учиться бесплатно
- Бесплатный доступ к 3 модулям
- Если решите продолжить, курс доступен в рассрочку на 22 месяца
- Первый платеж — через 3 месяца
- 6 173 ₽ /мес
- 11 224 ₽ /мес
Вам может понравиться
Где работают участники курсов Skillbox
Часто задаваемые вопросы
-
У меня нет опыта работы с данными. Подходит ли мне этот курс?
Курс подходит новичкам без специальных знаний и высшего технического образования. Главное — не пожалейте времени на первый этап. Внимательно выполняйте практические работы и не забывайте читать дополнительную литературу. Чем лучше вы поймёте основы, тем легче вам будет изучать курс дальше. -
Можно ли стать Data Scientist за 9 месяцев и найти работу?
Мы составили курс с учётом требований работодателей, а итоговые проекты и практические задания основаны на реальных проблемах, которые решают дата-сайентисты. Если заниматься регулярно, выполнять практические работы и не пропускать теоретические видео, то у вас будут все необходимые знания и сильное портфолио, чтобы удачно пройти собеседование. Всё остальное мы берём на себя: поможем составить резюме, подберём вакансии, подготовим к интервью и позовём заказчиков из бизнеса на презентацию итоговых проектов. -
Этот курс поможет мне стать Middle-специалистом?
На курсе вы выполните крупные проекты на основе реальных данных и получите навыки и умения, которые помогут вам трудоустроиться. Параллельно с работой вы сможете проходить продвинутые модули и использовать курс как базу знаний, чтобы быстрее вырасти в Middle-специалиста. -
Требуется ли знание математики?
На начальных этапах от вас не требуется продвинутых знаний — достаточно школьного курса математики. Не пугайтесь, если вам придётся разобраться в темах, которые вы забыли или не проходили, — куратор поможет освежить знания или даст ссылки на полезные материалы. -
Нужно ли знать английский язык?
Значения важных англоязычных терминов объясним на курсах. В практических работах перевести незнакомые слова поможет Google Переводчик. Но со знанием языка проще ориентироваться в среде разработки, читать документацию, участвовать в международных проектах.
Поэтому пользователям платформы Skillbox мы дарим бесплатные занятия в онлайн-школе КЭСПА на год. За это время вы освоите грамматику, пополните словарный запас и научитесь свободно читать и говорить на английском. -
Вижу много незнакомых терминов: Kaggle, ML, Big Data. Что всё это значит?
- Kaggle — соревновательная платформа для отработки навыков на реальных задачах. Например, там каждый может принять участие в исследовании крушения Титаника и найти интересные инсайты на основе данных о пассажирах. На платформе также можно самостоятельно изучить статьи на интересующие темы в сфере Data Science.
- ML — сокращение от machine learning, по-русски — машинное обучение. Это методы и алгоритмы, с помощью которых можно построить самообучаемую модель для решения любых задач: классификации текстов, распознавания фотографий, рекомендации фильмов в онлайн-кинотеатре или, например, предсказания цен на недвижимость. Нейросеть — один из видов алгоритмов машинного обучения, который у многих на слуху.
- ML-инженер — специалист по машинному обучению, который умеет строить такие модели и готовить их для использования бизнесом.
- Big Data — огромные массивы неструктурированных данных, которые генерирует бизнес, государство и обычные люди. Задача дата-сайентиста — с помощью специальных инструментов обработать, проанализировать и сделать полезные выводы из этих данных. Например, компания агрегатор такси может пересмотреть тарифную сетку на основе данных о поездках пассажиров города, а продуктовый магазин персонализировать ассортимент товаров, изучив сведения о покупках клиентов.
- Data Analyst — специалист по анализу Big Data. Он анализирует данные, формулирует гипотезы, проводит статистические тесты, ищет закономерности и помогает бизнесу принимать взвешенные решения. Обычно, такие специалисты лично не строят ML-модели в компании, а изучают результаты исследований — смотрят на данные с разных углов и применяют инструменты для визуализации, что превратить набор цифр в понятные для бизнеса отчёты.
-
Какой график обучения на платформе? Получится ли совмещать его с работой?
Вы можете изучать материалы курса в удобном вам режиме, совмещать обучение на платформе с работой и личной жизнью. Более того, все видео будут доступны и по окончании курса, так что вы сможете освежить свои знания в любой момент. -
Сколько часов в неделю мне нужно будет уделять обучению на платформе?
Всё зависит только от вас. Чтобы освоить курс за год, советуем вам заниматься от 8 до 10 часов в неделю. -
Кто будет проверять практические работы?
Никаких автоматических проверок и скриптов. С вами будет работать живой человек. Он не только укажет на ошибки, но и поможет разобраться в сложных темах и ответит на вопросы. Проверка практических работ и доступ к Telegram-чату уже входят в стоимость курса — ничего доплачивать не нужно. -
Действуют ли какие-нибудь программы рассрочки?
Да, вы можете купить курс в рассрочку — и спланировать свой бюджет, разбив всю сумму на небольшие ежемесячные платежи. -
Чем рассрочка отличается от кредита?
Вы оплачиваете только стоимость курса — проценты мы берём на себя. Для оформления рассрочки не требуются официальное трудоустройство и хорошая кредитная история. -
Что значит 3 месяца бесплатно?
Освоить новую профессию с нуля непросто, особенно вначале. Поэтому расходы за первые 3 месяца мы берём на себя — вам не придётся вносить ежемесячные платежи. Вместо этого сфокусируетесь на изучении курса и без стресса пройдёте необходимые основы. Внести остаток и оплатить полную стоимость курса можно до конца периода рассрочки. -
Могу ли я получить налоговый вычет за обучение на платформе?
Да, вы можете вернуть часть средств в виде налогового вычета. Основные условия: быть налоговым резидентом РФ и платить НДФЛ. Налоговый вычет составит до 13% от стоимости курса. Максимальная сумма возврата части НДФЛ — 15 600 рублей за год при цене курса 120 000 рублей.- Вы можете вернуть средства через работодателя или налоговую.
- Для этого понадобится договор на обучение на платформе, наша лицензия на образовательную деятельность и чек об оплате курса, который придёт вам на почту или в личный кабинет банка.
- Если вы будете оформлять вычет через налоговую, нужно будет заполнить декларацию 3-НДФЛ. Удобнее всего это сделать в личном кабинете на сайте Федеральной налоговой службы.
- В течение 30 дней налоговая подтвердит ваше право на вычет.
- Если будете оформлять возврат части НДФЛ через работодателя, вам останется подать ему заявление о получении налогового вычета.
Не переживайте, если процесс кажется вам сложным. Наши менеджеры помогут разобраться в том, как вернуть налоговый вычет.
- Санкт-Петербург
- Алматы
- Минск
- Москва
- Санкт-Петербург
- Алматы
- Волгоград
- Воронеж
- Екатеринбург
- Казань
- Красноярск
- Нижний Новгород
- Новосибирск
- Омск
- Пермь
- Ростов-на-Дону
- Уфа
- Челябинск
- Вологда
- Гомель
- Ижевск
- Иркутск
- Калининград
- Кемерово
- Киров
- Краснодар
- Курск
- Липецк
- Махачкала
- Оренбург
- Пенза
- Ростов
- Рязань
- Саратов
- Сочи
- Ставрополь
- Сургут
- Тверь
- Тольятти
- Томск
- Тула
- Тюмень
- Ульяновск
- Хабаровск
- Чебоксары
Отзывы участников
42 отзыва