Скидки до 60% и 3 курса в подарок : : Узнать больше Скидки до 60% и 3 курса в подарок
Образовательная платформа

Профессия Machine Learning Engineer

С нуля до трудоустройства
  • Бесплатный доступ к 5 модулям

    Попробуете профессию на практике

  • Обратная связь

    Вместо автопроверок — чат 
с наставником и разбор заданий

  • Трудоустройство

    Поможем найти работу — или вернём деньги. Подробности

  • Практика на реальных данных

    От компаний и экспертов

  • -45%

    Скидка  действует
    0 дня 00:00:00

Настоящее за искусственным интеллектом

Инженер машинного обучения, Data Scientist или ML-инженер анализирует большие объёмы информации, разрабатывает модели машинного обучения, нейросети и создаёт большие GPT-подобные языковые модели. Спрос на таких специалистов есть везде: в бизнесе, медицине, промышленности и других отраслях.

Начните учиться бесплатно

  • За 3 дня вы научитесь:

    • Использовать Python для решения задач с данными.
    • Выгружать информацию из разных источников.
    • Находить и подготавливать массивы данных так, чтобы на выходе иметь готовый к работе датасет.
    • Общаться с заказчиками и проводить интервью.

  • Дарим промокод на скидку 5%

    Используйте дополнительную скидку на полный курс, если захотите продолжить обучение

Оставьте заявку и получите бесплатный доступ к курсу

С вами свяжется эксперт-консультант — откроет доступ к 5 модулям курса и даст промокод на дополнительную скидку 5% на полный курс.

Вы сможете 3 дня бесплатно смотреть лекции в личном кабинете Skillbox. Изучите материалы курса и решите, продолжать ли обучение, — а эксперт расскажет, как начать успешную карьеру в индустрии.

Все необходимые навыки ML-инженера — в одном курсе

Должность

Специалист по машинному обучению/ML-engineer

Навыки

  • Уверенно владею Python, SQL
  • Извлекаю данные из различных источников (файлы, API, базы данных)
  • Умею проводить EDA и визуализировать его результаты
  • Провожу очистку и нормализацию данных, готовлю их к обучению и анализу
  • Провожу feature engineering и feature generation: оцениваю значимость фичей, отбираю признаки
  • Владею всеми классическими методами машинного обучения, умею их применять и адаптировать под задачу
  • Использую временные ряды для решения задач прогнозирования
  • Строю рекомендательные системы
  • Работаю с инструментами Big Data
  • Использую и дообучаю нейросети, в том числе трансформеры
  • Внедряю модели в прод в бизнесе
  • Строю пайплайны сбора и обработки данных, а также обучения ML-алгоритмов и оценки качества их работы
  • Замеряю качества работы алгоритмов с помощью модельных метрик и провожу их тестирование
  • Работаю с NLP/CV-задачами с помощью классических методов ML и Deep Learning

Инструменты

Сравниваете курсы от разных образовательных платформ?

Оставьте заявку на бесплатную консультацию, и мы расскажем, чем наша программа обучения отличается от остальных.

У них получилось — получится и у вас

  • Александр всю жизнь работал в море. Когда он понял, что достиг потолка, — решил параллельно с основной работой освоить Machine Learning. Дальние плавания не помешали Александру создать свой первый коммерческий проект в области искусственного интеллекта!

    Капитан судна Инженер машинного обучения
  • Параллельно с учёбой в вузе Влад решил освоить Data Science в Skillbox. После прохождения курса он собрал портфолио из домашних заданий и с ним нашёл работу в Сингапуре.

    Студент ML-инженер в сингапурской компании
  • Владимир успешно работал программистом, но потом понял, что перестал развиваться. Решил освоить машинное обучение в Skillbox, увеличил доход, освоил новый язык программирования и разработал собственную нейросеть.

    Программист Специалист по Machine Learning
  • Алексей сменил несколько руководящих постов, погрузился в науку о данных, чтобы оптимизировать рабочие процессы и побороть бюрократию.

    Руководитель в администрации морских портов Руководитель проектов и исследователь данных
  • Андрей 15 лет работал оператором баз данных, а затем впечатлился возможностям искусственного интеллекта и решил освоить Data Science в Skillbox. Прошёл курс, защитил дипломный проект и планирует найти работу в сфере ML.

    Оператор баз данных IT-специалист в области искусственного интеллекта и машинного обучения

Вас ждёт практика в Kaggle

Kaggle — это онлайн-платформа для работы с реальными дата-сетами. Проекты, которые вы создадите в Kaggle, станут частью вашего портфолио и помогут быстрее трудоустроиться.

Во время курса вы самостоятельно построите модель для решения задачи на данных из Kaggle.

Учим на собственной образовательной платформе

  • Видео с доступом навсегда

    Видеолекции можно смотреть
в любое время. У вас нет жёстких дедлайнов. Мы постоянно обновляем курс под требования рынка — доступ ко всем обновлениям курса останется с вами.

  • Практика построена на реальных задачах

    Методолог и практикующие эксперты приготовили более 80 практических заданий на развитие аналитического мышления и отработки навыков.

  • Персональная обратная связь

    Подробная обратная связь от кураторов-экспертов в течение 24 часов с момента отправки работы.

Команда поддержки будет рядом

  • Куратор-эксперт будет проверять ваши работы и помогать сделать их лучше. А ещё — проводить воркшопы с разбором домашних заданий. В кураторы мы берём практикующих экспертов с опытом работы от 5 лет. Они проходят методическое обучение — и умеют объяснять сложное.

    Куратор-эксперт

    Подробно разбирает домашние задания, помогает сделать лучше

  • HR-консультант поможет в поиске работы. Вместе вы составите план развития, резюме и портфолио. Консультант подготовит вас к собеседованиям и даст доступ к закрытому каналу с вакансиями.

    HR-консультант

    Помогает в поиске работы: 
от плана действий до собеседований

  • Служба заботы поддержит в решении всех технических вопросов. Например, поможет установить лицензионные программы или объяснит, как работать с учебной платформой.

    Служба заботы

    Помогает с вопросами по платформе и прохождению курса

Мы хотим, чтобы всё у вас получилось

Помогаем разобраться и справиться

Оперативно ответим на вопросы по домашнему заданию и пришлём качественный разбор 💙

  • Учебное комьюнити для общения и обмена опытом

    Встречайтесь в чатах курса, делитесь решениями, объединяйтесь в команды с первых дней обучения

  • Помощь по всем техническим вопросам

    Поможем установить лицензионные программы, ответим на вопросы о платформе

  • Доступ навсегда — к курсу и чату в Telegram

    Сможете задавать вопросы в чате и смотреть обновления программы даже после окончания обучения

Учитесь у ML-инженеров из международных компаний

Учим так, чтобы у вас точно всё получилось

  • С учётом реальных требований к кандидатам и технологий

    Постоянно следим за актуальностью курса и обновляем программу — добавляем только те навыки, которые сейчас нужны рынку.

  • Без дедлайнов и жёсткого расписания

    Понимаем, как сложно учиться, будучи взрослым, поэтому не отчисляем студентов. Учитесь в любое время и сдавайте домашние работы когда удобно.

  • Понятно и профессионально

    Мы посмотрели курс глазами новичка и упростили подачу материала, чтобы вы точно разобрались со сложными темами.

Трудоустройство

85% выпускников находят работу в течение 3 месяцев после окончания обучения, по данным исследования Высшей школы экономики

  1. Поможем оформить резюме и портфолио
  2. Подготовим 
к собеседованиям
  3. Пригласим в закрытый
канал с вакансиями

Поможем найти работу
или вернём деньги

Условия возврата

Найдёте первых заказчиков
в «Скил Маркете»

  • Реальные заказы
  • Первые клиенты
  • Кейсы в портфолио
  • Совместные проекты

«Скил Маркет» — это комьюнити Skillbox
 в Telegram, в котором участники публикуют заказы на коммерческие
и некоммерческие проекты. Там вы сможете откликаться на задачи
или искать людей себе в команду для совместных проектов.

Программа профессии

  • 12 месяцев обучения
  • 3 проекта в портфолио
  • Доступ навсегда
  • Обновлена в 2024 году
  1. Бесплатные модули
    1. Доступ на 3 дня Освоите азы профессии и поймёте, готовы ли учиться дальше
      • Введение в Data Science
      • Business Understanding. С чего начинается работа с данными
      • Data Understanding. Excel
      • Введение в Python
      • Переменные и типы данных
  2. Уровень 0: Базовая подготовка — 5 месяцев
    1. Введение в Data Science Этот блок нужно пройти, чтобы получить основные навыки работы с данными.
      • Введение в курс
      • Business Understanding. С чего начинается работа с данными
      • Data Understanding. Excel
      • Введение в Python
      • Переменные и типы данных
      • Условия
      • Циклы
      • Алгоритмы и структуры данных
      • Функции
      • Коллекции в Python
      • Чтение файлов в Python и командной строке
      • Библиотека Pandas
      • Получение данных с помощью API
      • Базы данных
      • Язык запросов SQL
      • Power BI
      • Data Preparation
      • Разведочный анализ данных: Data Cleaning
      • Разведочный анализ данных: Data Visualization
      • Разведочный анализ данных. Feature Engineering
      • Modeling
      • Машинное обучение
      • Линейные модели и нейронные сети
      • Метрики в аналитике
      • Маркетинговая аналитика
      • Продуктовая аналитика
      • Modeling. Заключение
      • Evaluation
      • Deployment
      • Модель как API
      • Мониторинг моделей
      • Airflow
      • Заключение
    2. Финальная работа совместно с СберАвтоподписка Вам предстоит изучить предоставленный датасет, ответить на вопросы из общей части (подразумевающей базовую обработку данных и их разведочный анализ) и выполнить задание по специализации.
    3. Основы математики для Data Science Пройдите этот блок, чтобы разобраться, как работают различные методы анализа данных, как строятся модели прогнозирования и как выявляются связи между разными переменными.
      • Аналитика и ML. Базовые математические объекты и SymPy. Дроби и преобразования
      • Аналитика и ML. Базовые математические объекты и SymPy. Необходимые функции и некоторые дополнительные объекты
      • Аналитика и ML. Функции одной переменной, их свойства и графики
      • ML. Интерполяция и полиномы
      • ML. Аппроксимация и преобразования функций
      • ML. Аппроксимация и производные
      • ML. Функции нескольких переменных, их свойства и графики
      • ML. Частные производные функции нескольких переменных
      • ML. Векторы и Матрицы. Градиент
      • ML. Линейная регрессия и системы линейных уравнений
      • Задача аппроксимации как матричное уравнение
    4. Основы статистики и теории вероятностей Из этого блока вы узнаете, как измерить вероятность разных событий и оценить надёжность полученных выводов.
      • Введение в теорию вероятностей
      • Случайные события
      • Случайная величина
      • Непрерывные распределения. Общие сведения
      • Основные виды непрерывных распределений
      • Статистические тесты
  3. Уровень 1: погружение в Machine Learning и трудоустройство — 4 месяца
    1. Machine Learning: Junior Получите все необходимые навыки для работы на позиции Machine Learning Junior.
      • Постановка задачи машинного обучения
      • Основные термины машинного обучения
      • Выгрузка данных с помощью SQL
      • Линейная регрессия
      • Регуляризация линейной регрессии
      • Метрическая классификация. Метод ближайших соседей и его развитие
      • Библиотека numpy
      • Линейная классификация. Логистическая регрессия
      • Линейная классификация. Метод опорных векторов
      • Логическая классификация. Деревья решений
      • Деревья решений и случайный лес
      • Очистка данных
      • Кластеризация. Метод k-средних
      • Интерпретация. Метод k-средних
      • Кластеризация. DBSCAN
      • Несбалансированные выборки
      • Нейрон и нейронная сеть
      • Основы анализа текстов
    2. Соревнование на Kaggle Самостоятельно построите модель для решения задачи. Проведёте сбор и разведочный анализ данных, выберете ML-алгоритм и обучите свою модель, оцените её качество и поработаете над улучшениями.
    3. Итоговый проект. Модель кредитного риск-менеджмента для банка. Проанализируете объёмный датасет и создадите модель кредитного риск-менеджмента. Поможете банку спрогнозировать платёжеспособность клиента.
    4. Трудоустройство с помощью Центра карьеры С помощью Центра карьеры Skillbox
      • Карьерный консультант поможет подготовиться к собеседованию в компании-партнёре. Разберёте частые вопросы и научитесь меньше переживать на интервью.
      • Напишете сопроводительное письмо и грамотно оформите резюме.
      • Будете готовы пройти собеседование — карьерный консультант организует встречу с работодателем.
      • На интервью презентуете проекты, над которыми вы работали на курсе, а знания и навыки пригодятся для выполнения тестовых задач.
  4. Уровень 2: углубление знаний — 3 месяца
    1. Machine Learning. Advanced Освоите алгоритмы для построения рекомендательных систем и прогнозирования временных рядов.
      • Введение
      • Auto ML. Часть 1
      • Auto ML. Часть 2
      • Введение в Computer Vision
      • Нейронные сети и Computer Vision
      • Нейронные сети и NLP. Часть 1
      • Нейронные сети и NLP. Часть 2
      • Введение в рекомендательные системы
      • Коллаборативная фильтрация
      • Бизнес оценка рекомендательных систем
      • Продвинутые инструменты ML инженера
      • Временные ряды
      • Прогнозирование временных рядов с помощью других методов
      • Мониторинг качества. Бонус-модуль
    2. Deep Learning Научитесь работать с нейросетями
      • Нейронные сети: введение
      • Инструменты для глубокого обучения
      • Свёрточные нейронные сети
      • Задача оптимизации
      • Fine-tuning & Transfer Learning
      • Natural Language Processing
      • Сегментация и детекция
      • Reinforcement Learning
      • Advanced: продвинутые нейронные сети
  5. Дополнительные курсы
    1. Основы статистики и теории вероятностей Advanced Научитесь применять основные принципы статистики и теории вероятностей при работе с задачами Data Science. Поймете, как устроены алгоритмы машинного обучения, как в них применяются математическая статистика и теория вероятностей.
      • Gentle introduction. Теория вероятностей в Python
      • Оценивание
      • Проверка гипотез: теория
      • Проверка гипотез: практика
      • Совместные распределения
      • Исследование зависимостей
      • Временные ряды
      • Дополнительные главы (частотный и байесовский подходы, энтропия и дивергенция, формула Байеса)
    2. Карьера разработчика: трудоустройство и развитие Узнаете, как выбрать подходящую вакансию, подготовиться к собеседованию и вести переговоры с работодателем. Сможете быстрее получить должность, которая соответствует вашим ожиданиям и умениям.
      • Подготовка к поиску работы
      • Составление резюме
      • Поиск работы
      • Выполнение тестовых заданий
      • Подготовка к собеседованию и его прохождение
      • Принятие оффера и выход на работу
      • Профессиональное развитие и карьерный рост
      • Типичные вопросы на собеседованиях
      • Требования к программистам разных направлений

Подтверждение ваших навыков

В конце обучения получите сертификат установленного образца. Мы обучаем по государственной лицензии №Л035−1 298−77/179 609.

Посмотреть сертификат

Специалисты по ML меняют мир в лучшую сторону

  • Упрощают поиск контента

    Создают рекомендательные системы для онлайн-кинотеатров, стриминговых сервисов и интернет-магазинов.

  • Экономят деньги компаниям

    Автоматизируют рутину, обучают нейросети распозновать договора, оптимизировать цепочки поставок и предсказывать успешные инвестиции.

  • Спасают людям жизни

    Обучают модели, которые способны распознать онкологические заболевания на ранних стадиях, тренируют алгоритмы компьютерного зрения обнаруживать преступников в толпе.

  • Делают города комфортнее для жизни

    Обучают нейросети анализировать трафик, отслеживать и прогнозировать уровни загрязнения воздуха и воды.

Кем можно работать после курса

  • Специалистом по Machine Learning

    Будете обучать алгоритмы классического машинного обучения и создавать сервисы на их основе: прогнозировать курс валют и акций, оптимизировать цепочки поставок или, например, создавать рекомендательные системы для музыкальных стримингов.

  • Специалистом по компьютерному зрению

    Будете работать с алгоритмами которые позволяют контролировать безопасность
на производстве, усталости водителей и повреждений трубопроводов на нефтезаводах. Потенциально сможете поучаствовать в создании беспилотных автомобилей и другого транспорта.

  • Специалистом по NLP

    Будете улучшать такие большие языковые модели, как LLaMA и работать с другими GPT-подобными моделями, а также работать с алгоритмами, которые извлекают информацию из документов, анализируют комментарии пользователей в соцсетях, и будете строить поисковые движки и создавать виртуальных помощников для бизнеса.

Общение, комьюнити и нетворкинг

Доступ в студенческий чат с экспертами и поддержка кураторов на протяжении всего обучения.

Выгодные условия оплаты

  • Оплата — через 
6 месяцев

    При оформлении рассрочки начнёте её выплачивать после 
6 месяцев обучения

  • Рассрочка без процентов

    Без переплат, первого взноса или дополнительных процентов

  • Налоговый вычет

    Можно вернуть до 13% от стоимости курса, мы поможем оформить документы

Начните учиться бесплатно

  • Бесплатный доступ к 5 модулям
  • Если решите продолжить, курс доступен в рассрочку на 31 месяц
  • Первый платеж — через 6 месяцев
  • 5 897 ₽ /мес
  • 10 722 ₽ /мес
Найди себя в Skillbox Скидка 45% действует 0 дня 00:00:00

Записаться на курс или получить бесплатную консультацию

Похоже, произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.

Нажимая на кнопку, я соглашаюсь на обработку персональных данных, с правилами пользования Платформой и публичной офертой, правилами акций «Поможем найти работу или вернем деньги» и «Учись сейчас — плати потом»

Спасибо!

Ваша заявка успешно отправлена

Где работают участники курсов Skillbox

Студенты довольны обучением

  • 93% выпускников отмечают, что Skillbox помог достичь поставленной цели
  • 78% выпускников готовы рекомендовать обучение в Skillbox

Данные независимого опроса выпускников Skillbox, проведённого Высшей школой экономики (НИУ ВШЭ)

4 500+ оценок на разных независимых площадках

  • 4,7
    4 967 оценок
  • 4,7
    974 оценки
  • 4,8
    490 оценок
  • 4,5
    2 368 оценок
  • 4,7
    559 оценок
  • 5,0
    321 оценка
  • 4,5
    230 оценок
  • 4,7
    232 оценки

Часто задаваемые вопросы

  • У меня нет опыта работы с данными. Подходит ли мне этот курс?

    Курс по машинному обучению подходит новичкам без специальных знаний, высшего образования и талантов. Главное — не пожалейте времени на первый этап. Внимательно выполняйте практические работы и не забывайте читать дополнительную литературу. Чем лучше вы поймёте основы, тем легче вам будет учиться дальше.

  • Можно ли стать ML-инженером за 2 года и найти работу?

    Мы составили программу профессии «Machine Learning Engineer» с учётом требований работодателей, а итоговые проекты и практические работы основаны на реальных проблемах, которые решают дата-сайентисты. Если заниматься регулярно, практиковаться и не пропускать теоретические видео, то у вас будут все необходимые знания и сильное портфолио, чтобы удачно пройти собеседование. Всё остальное мы берём на себя: поможем составить резюме, подберём вакансии, подготовим к интервью и позовём заказчиков из бизнеса на презентацию итоговых проектов.

  • Требуется ли знание математики?

    Для того, чтобы начать осваивать профессию ML-инженера на начальных этапах от вас не требуется продвинутых знаний — достаточно школьного курса математики. Не пугайтесь, если вам придётся разобраться в темах, которые вы забыли или не проходили, — куратор поможет освежить знания или даст ссылки на полезные материалы.

  • Нужно ли знать английский язык?

    Значения важных англоязычных терминов объясним на курсах. В практических работах перевести незнакомые слова поможет Google Переводчик. Но со знанием языка инженеру машинного обучения проще ориентироваться в среде разработки, читать документацию, участвовать в международных проектах.
    Поэтому пользователям платформы Skillbox мы дарим бесплатные занятия в онлайн-школе КЭСПА на год. За это время вы освоите грамматику, пополните словарный запас и научитесь свободно читать и говорить на английском.

  • Сколько часов в неделю мне нужно будет уделять учёбе?

    Всё зависит только от вас. В среднем участники курса по машинному обучению занимаются от 2 до 3 часов в день.

  • Кто будет проверять практические задания?

    В обучении профессии «Machine Learning Engineer» нет никаких автоматических проверок и скриптов. Куратор-практик не только укажет на ошибки, но и поможет разобраться в сложных темах, ответит на вопросы. Проверка практических заданий и доступ к Telegram-чату уже входят в стоимость курса — ничего доплачивать не нужно.

  • Действуют ли какие-нибудь программы рассрочки?

    Да, вы можете купить курс в рассрочку — и спланировать свой бюджет, разбив всю сумму на небольшие ежемесячные платежи.

  • Чем рассрочка отличается от кредита?

    Вы оплачиваете только стоимость курса — проценты мы берём на себя. Для оформления рассрочки не требуются официальное трудоустройство и хорошая кредитная история.

  • Что значит 3 месяца бесплатно?

    Освоить новую профессию ML-инженера с нуля непросто, особенно вначале. Поэтому расходы за первые 3 месяца мы берём на себя — вам не придётся вносить ежемесячные платежи. Вместо этого сфокусируетесь на изучении курса и без стресса пройдёте необходимые основы. Внести остаток и оплатить полную стоимость курса можно до конца периода рассрочки.

  • Могу ли я получить налоговый вычет за обучение на платформе?

    Да, вы можете вернуть часть средств в виде налогового вычета. Основные условия: быть налоговым резидентом РФ и платить НДФЛ. Налоговый вычет составит до 13% от стоимости курса. Максимальная сумма возврата части НДФЛ — 15 600 рублей за год при цене курса 120 000 рублей.

    • Вы можете вернуть средства через работодателя или налоговую.
    • Для этого понадобится договор на обучение на платформе, наша лицензия на образовательную деятельность и чек об оплате курса, который придёт вам на почту или в личный кабинет банка.
    • Если вы будете оформлять вычет через налоговую, нужно будет заполнить декларацию 3-НДФЛ. Удобнее всего это сделать в личном кабинете на сайте Федеральной налоговой службы.
    • В течение 30 дней налоговая подтвердит ваше право на вычет.
    • Если будете оформлять возврат части НДФЛ через работодателя, вам останется подать ему заявление о получении налогового вычета.

    Не переживайте, если процесс кажется вам сложным. Наши менеджеры помогут разобраться в том, как вернуть налоговый вычет.